大口徑蝶閥響應時間
前言:我們北方閥門集團有限公司是坐落在山東濰坊的閥門生產廠家,除了一會要討論的大口徑閥門,大口徑蝶閥,我們公司還生產、銷售各種規格的球閥、閘閥、蝶閥、截止閥等全品類工業閥門,將100%符合標準,100%保證質量,100%讓您滿意,我們的服務“一切為了客戶”。
大口徑蝶閥廠家北高科集團技術部整理,對于許多過程的優化控制,重要的是大口徑蝶閥快速地到達一個指定的位置。對于小信號改變(1%或更小)作出快速的響應是在提供優化過程控制方面的其中一個最重要的因素。在自動的、調節式控制場合,從控制器接受的大量信號改變都是為了取得小的大口徑蝶閥改變。如果一個調節閥(控制閥)組件能夠快速地對這些小信號改變作出響應,過程偏差度將會得到改善。
大口徑蝶閥響應時間是通過一個稱為T63 的參數來測量的。(見第1 章里的定義)。T63 是從輸入信號改變開始起到輸出達到63%的相應改變時測量所得到的時間。它包括大口徑蝶閥組件的時滯時間(一個靜態時間)和大口徑蝶閥組件的動態時間。這個動態時間是對于執行機構從一旦開始移動至達到63%的點所需要的時間的一種度量。
死區,不管是源自閥體和執行機構里的摩擦力,還是來自定位器的,都能在很大程度上影響大口徑蝶閥組件的時滯時間。重要的是使得時滯時間盡可能地小。總的來說,時滯時間應該不超過大口徑蝶閥總體響應時間的三分之一。然而,時滯時間與過程時間常數之間的相對關系是關鍵的。如果大口徑蝶閥組件置于一個過程時間常數接近時滯時間的快速回路里,時滯時間會嚴重地影響回路的性能。在這些快速回路里,關鍵是要選擇時滯時間盡可能小的控制設備。
從回路整定的角度看,時滯時間在大口徑蝶閥的兩個行程動作方向保持相對恒定也是很重要的。有些大口徑蝶閥組件結構在一個行程動作方向比在另一個有3 至5倍長的時滯時間。這種特性典型地是由定位器設計的不對稱特性引起的。它會嚴重地限制把回路整定到最佳總體性能的能力。
一旦時滯時間已經過去,且大口徑蝶閥開始響應,大口徑蝶閥響應時間的剩余部分來自大口徑蝶閥組件的動態時間。這個動態時間主要是由定位器和執行機構組合的動態特性決定的。這兩個部件必須很好地匹配以減少大口徑蝶閥的總的響應時間。例如,在一個氣動大口徑蝶閥組件里,定位器必須有一個高動態增益以減小大口徑蝶閥組件的動態時間。這個動態增益主要由定位器里的動力放大器提供。換言之,定位器放大器或滑閥能夠越快地提供大量的壓縮空氣給執行機構,大口徑蝶閥的響應時間也將越快。然而,這種高動態增益動力放大器對時滯時間有很小的影響,除非它有一些故意設計在其中的死區以減少靜態耗氣量。當然,執行機構的設計對動態時間有很大的影響。例如,需要充填的執行機構氣室的容積越大,大口徑蝶閥的響應時間就越慢。
首先,可能看起來解決方案應該是把執行機構容積減至最小,并把定位器的動態動力增益提高至最大,但是事實并非如此簡單。從穩定性角度看,這可能是多個因素的危險組合。要知道定位器/ 執行機構組合組成了它自己的反饋回路。對于正在使用的執行機構型式,使得定位器/ 執行機構回路的增益太高可能會引導大口徑蝶閥組件進入一個不穩定的振蕩狀態。另外,減小執行機構容積對于推力/摩擦力比例有負面影響。這會增加大口徑蝶閥組件的死區,從而導致時滯時間的增加。
對于一個給定的應用場合,如果沒有足夠的總體推力/摩擦力比例,一個選擇就是通過使用下一個較大尺寸的執行機構來增加執行機構的推動力、或增加給執行機構的壓力。這個較高的推力/摩擦力比例會減小死區。這有助于減少大口徑蝶閥組件的時滯時間。然而,這兩個選擇都意味著需要較大的壓縮空氣量供應給執行機構。作為交換的是通過增加動態時間而對大口徑蝶閥響應時間產生一個可能的破壞性影響。
減少執行機構氣室容積的一個方法是使用活塞執行機構而非彈簧薄膜執行機構,但這不是靈丹妙藥。活塞執行機構通常比彈簧薄膜執行機構有更大的推力,但是它們也有更高的摩擦力,這可能會引起與大口徑蝶閥響應時間有關的問題。為了獲得需要的活塞執行機構的推力,通常有必要使用比薄膜執行機構更高的氣源壓力,因為典型地活塞有更小的受壓面積。這意味著需要供應更大量的空氣,隨之而產生的是對動態時間的負面影響。另外,活塞執行機構有更多的導向表面。它們由于配合方面的內在困難以及與O 型圈的摩擦,趨向于有更高的摩擦力。這些摩擦力的問題也趨向于隨著時間而增加。不管最初這些O 型圈是多么好,由于磨損或其它環境條件,這些彈性材料會隨時間而降低性能。類似地,導向表面的磨損會增加摩擦力,潤滑程度也會降低。這些摩擦力問題會產生更大的活塞執行機構死區。這會通過增加時滯時間而增加大口徑蝶閥的響應時間。
儀表供氣壓力也可能對大口徑蝶閥組件的動態性能產生很大的影響。例如,它能顯著地影響定位器的增益和總耗氣量。
固定增益定位器通常已經在某一特殊供氣壓力下進行了優化。然而,這個增益可能會在供氣壓力的很小變化范圍內成兩倍或更多倍地變化。例如,一個在20 Psig 的供氣壓力下進行優化的定位器可能會被發現當供氣壓力增加到35 Psig 時,它的增益減少了一半。
供氣壓力也會影響供應給執行機構的空氣__量。空氣量則決定動作速度。它也與耗氣量直接相關。高增益滑閥定位器需要消耗5 倍于在動力放大階段使用放大器的更加高效的高性能二級定位器所需的氣量。最小化大口徑蝶閥組件的時滯時間需要最小化大口徑蝶閥組件的死區,不管這個死區是由于大口徑蝶閥密封結構的摩擦力引起的,還是由于填料的摩擦力、閥軸的扭轉、執行機構或者定位器的結構引起的。正如先前指出的,摩擦力是調節閥(控制閥)死區的主要原因。對于旋轉式大口徑蝶閥,閥軸扭轉(見第1 章里的定義)也是死區的重要起因。執行機構的類型也對大口徑蝶閥組件的摩擦力有重要影響。總的來說,在很長一段時間內,活塞執行機構比彈簧薄膜執行機構提供更大的摩擦力給調節閥(控制閥)組件。如前面所提及的,這是由于活塞O形圈、配合不佳的問題、以及潤滑失效引起的不斷增加的摩擦力導致的。
帶高靜態增益前置放大器的定位器型式在減小死區方面可以產生很大的不同。它也會對大口徑蝶閥組件的分辨率(見第1 章里的定義)作出顯著的改善。死區和分辨率為1% 或更小的大口徑蝶閥組件對于滿足許多降低過程偏差度的需要是不夠的。許多過程要求大口徑蝶閥組件有低至0.25%的死區和分辨率,尤其是大口徑蝶閥組件安裝于一個快速過程回路的場合。
在對調節閥(控制閥)響應時間的許多研究里有一件令人稱奇的事情。那就是關于彈簧薄膜執行機構對活塞執行機構的觀念上的變化。過程工業里長期以來的一個誤解是活塞執行機構動作起來比彈簧薄膜執行機構快。研究已經表明對于小信號改變,這是不正確的。
這個誤解來自于測試大口徑蝶閥的動作時間的多年經驗。動作時間測試通常是這樣進行的:讓大口徑蝶閥組件接受一個100% 階躍改變的輸入信號,然后測量大口徑蝶閥組件在某一方向上完成一次全行程動作所需要的時間。
盡管活塞驅動的大口徑蝶閥通常比大部分彈簧薄膜驅動的大口徑蝶閥有更快的動作時間,但是這種測試并不能說明在實際的過程控制情況下的大口徑蝶閥的性能。在正常的過程控制應用場合里,大口徑蝶閥很少需要全行程的動作。典型地,大口徑蝶閥只要求在一個0.25% 至2% 的閥位變化范圍內作出響應。廣泛的大口徑蝶閥測試表明彈簧薄膜大口徑蝶閥組件在小信號改變方面的性能總是超過活塞驅動的大口徑蝶閥,而小信號改變更能代表調節式過程控制應用工況。活塞執行機構里較高的摩擦力是使得它們比彈簧薄膜執行機構對于小信號的響應更加慢的一個作用因素。
選擇正確的大口徑蝶閥、執行機構和定位器組合不是容易的。這并不是一件簡單地找到一個在物理上匹配的組合的事情。良好的工程判斷必須融入大口徑蝶閥組件的計算和選型實踐,以取得回路的最佳動態性能。
在看完這篇《大口徑蝶閥響應時間》之后,相信您對大口徑閥門,大口徑蝶閥也有了一定了解,我們北方閥門集團有限公司是大口徑閥門,大口徑蝶閥生產廠家,主要從事各種工業閥門的研發、生產和銷售。無論您需要什么規格型號、適配什么生產環境的閥門,只需撥打我們的熱線電話,我們將竭誠為您提供最合適的解決方案~
本文來自:北方閥門集團有限公司,轉載請注明出處:http://www.hgjkou.com/html/xwdt/xyxw/1486.html
版權與免責聲明:本網站的部分文章或產品信息及圖片來自于網絡,本網站不保證文章和產品信息的絕對準確性和絕對完整性,也不代表本網贊同其觀點或證實其內容的真實性;如涉及作品內容、版權等問題,請聯系本網站刪除。